
JOURNAL OF COMPUTATIONAL PHYSICS 98,673 (1992) 

Triangle Based Adaptive Stencils for the Solution 
of Hyperbolic Conservation Laws 

LOUIS J. DURLOFSKY 

Chevron Oil Field Research Company, P.O. Box 446, La Habra, California 90633-0446 

AND 

BJORN ENGQUIST* AND STANLEY OSHER* 

Department of Mathematics, UCLA, Los Angeles, California 90024 

Received January 3, 1990; revised December 7. 1990 

A triangle based adaptive difference stencil for the numerical 
approximation of hyperbolic conservation laws in two space dimen- 
sions is constructed. The novelty of the resulting scheme lies in the 
nature of the preprocessing of the cell averaged data, which is accom- 
plished via a nearest neighbor linear interpolation followed by a slope 
limiting procedure. Two such limiting procedures are suggested. The 
resulting method is considerably more simple than other triangle based 
non-oscillatory approximations which, like this scheme, approximate 
the flux up to second-order accuracy. Numerical results for constant 
and variable coefficient linear advection, as well as for nonlinear flux 
functions (Burgers’ equation and the Buckley-Leverett equation), are 
presented. The observed order of convergence, after local averaging, is 
from 1.7 to 2.0 in L, 0 1992 Academic Press, Inc 

1. INTRODUCTION 

In the last several years there has been considerable effort 
aimed at constructing and analyzing high order accurate, 
non-oscillatory approximations to hyperbolic conservation 
laws (see, e.g., [l-3]). It is by now well established that 
the spontaneous development of shock waves and the 
appearance of steep gradients in the solution require higher 
order schemes to have an adaptive stencil (by adaptive 
stencil we mean an adaptive flux approximation, not an 
adaptive grid) in order to suppress the spurious oscillations 
that plague conventional finite difference methods. Total 
variation diminishing (TVD) schemes, one such class of 
second-order accurate methods that eliminate unphysical 
oscillations, have been used successfully in a variety of 
applications. Recently, a new class of methods, essentially 
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non-oscillatory (ENO) schemes [4, 51, which surpass 
the second-order accurate barrier associated with TVD 
schemes, has been developed. An alternative approach for 
third-order shemes was developed in [6]. 

Extensions of TVD and EN0 schemes to two and three 
dimensions are typically designed in a dimension by dimen- 
sion fashion. Therefore, the extension of these higher order 
schemes to the solution of hyperbolic conservation laws on 
unstructured grids, such as a triangular mesh, is not 
immediate. It is our intent in this paper to devise a second- 
order accurate scheme of TVD type (i.e., formally second- 
order accurate as a flux approximation and based on the 
MUSCL formulation [7, S]) which is applicable to an 
unstructured triangular grid. Our scheme is based on a finite 
volume type discretization and is particularly straight- 
forward to implement. The scheme relies on a very local 
adaptive interpolation idea, which results in computational 
efficiency. The adaptive two-dimensional interpolation 
ideas presented here can be extended to develop triangle 
based, higher order EN0 type schemes. The application of 
the scheme to the simulation of two phase flow through 
porous media (e.g., oil reservoir simulation), considered 
briefly in Section 3, will be the subject of a future publi- 
cation. 

Several approaches for the solution of hyperbolic conser- 
vation laws on triangular grids already exist. A finite volume 
approach, with dissipation added explicitly, is discussed in 
[9]. Other techniques, within the context of finite element 
methods, have utilized flux corrected transport (FCT) ideas 
[ 10, 1 l] or have required the generation of a complex 
auxiliary grid [ 121 or are truly finite element methods in 
space and time and thus are more costly computationally 
[13, 141. The methodology presented here is, in our 
opinion, simpler and more efficient, primarily because a 
finite volume rather than a finite element approach is used, 
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thus avoiding the overhead associated with finite element 
schemes. 

Although the methods we shall develop in Section 2 are 
multidimensional extensions of so-called second-order 
TVD schemes, they are technically neither total variation 
diminishing nor strictly second-order accurate (we will, 
however, refer to them as second-order schemes). In 
general, the total variation of our solutions may increase 
[ 151, though satisfaction of a maximum principle is 
achieved in all of our numerical calculations. Also, although 
the fluxes are strictly approximated up to second order, the 
truncation error is technically lower because of the adaptive F 

stencil and the variable size of the triangles. Numerical FIG. 1. Schematic of a portion of the triangular grid. 

experiments presented in Section 3 indicate orders of 
accuracy, after local averaging, between 1.7 and 2.0 in the L, i.e., ii,,, the average of u over A,,,, gives 
norm. In Section 4 we suggest further extensions of the 
method within this context and indicate partial extensions 
to include diffusive terms. 

2. CONSTRUCTION OF THE 
NUMERICAL SCHEMES 

+ il,, F . “AC df 

7 

Our intent in this section is to develop a scheme to solve 
hyperbolic conservation laws on triangular grids in two 
space dimensions. The method presented is for a single 
hyperbolic conservation law, though hyperbolic systems 
can be treated analogously in a field by field manner (see, 
e.g., [4]). Our method is finite volume based and achieves 
greater than first-order accuracy through use of a novel 
adaptive flux interpolation procedure. We first present the 
general finite volume approach, then introduce our general 
limiting procedure, and then discuss various specific limiters. 

2.1. Finite Volume Discretization 

Consider the hyperbolic conservation law, 

u,+V.F(u)=g(x, t), 

4x5 0) = u,(x), 
(2.1) 

subject to boundary conditions. We wish to solve (2.1) on a 
triangular grid, a portion of which is shown schematically in 
Fig. 1. Integrating (2.1) over a triangle (AABc to be specific) 
gives 

a 

it s 
udA= - (V . F) dA, (2.2) 

~RBC s ~ABC 

where A ABC represents the region ABC, lAABCj denotes its 

+- J F.n,,dl . 
1 

(2.3) 
(BC 

Note that ti,,, is equal to the value of u evaluated at the tri- 
angle centroid (xABc) to within 0( \A,,,[), or, analogously, 
to within O(P), where I is the characteristic length of a side 
Of AA,,. Here n is the unit outward normal. We require that 
all angles be uniformly bounded away from zero. 

We approximate (2.3) by first using a semi-discrete 
approach where the approximation is 

the same is true for all triangles. First-order accurate 
monotone schemes can easily be constructed-see, e.g., 
[16, 171. Let h,,(w,, w2) be a two-point Lipschitz 
continuous monotone flux, approximating F . n,,, i.e., 

hBC(w, W) = F .n,c, (2.4a) 

hB, (w r, w2) is a nondecreasing function 
of w 1 and a nonincreasing function of w2. (2.4b) 

Then our semidiscrete monotone approximation is 

a 
- uABC(t) = - ,AABC, at L ChBC( uABC~ vBCD) .I,, 

area, and g(x, t) has been taken to be zero for simplicity of 
exposition only. Applying the divergence theorem to the + hAB(~ABC7 ~A,,) .1.4, 

right-hand side of (2.2) and defining + hAC(vABC~ UACE) ‘1AC1, (2.5) 

b(-‘(jAABcUd~) (i~...i)-‘, where I,, is the length of the side BC, etc. “E” schemes may 
also be used-see [ 161 for the definition and for examples. 
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In [18, Theorem 2-21, it was shown for monotone 
schemes of this type that a triangle based Lax-Wendroff 
type theorem is true. Precisely, we define the quantity 

where (1) the sum is taken over all values such that A,,, 
and A,swc have a common edge, (2) the triangulation is 
such that the largest inscribed circle and the smallest cir- 
cumscribed circle both have diameter which is uniformly 
O(d), and (3) B(u) is uniformly bounded for all t as the tri- 
angulation is relined, i.e., as d + 0. Then, monotone schemes 
of the type (2.5) converge to a weak solution of (2.1). It is 
a straightforward matter to extend this result to the schemes 
we shall develop below. 

To obtain higher order accuracy we preprocess our initial 
data so that in each triangle, in particular A,,,, a linear 
function is obtained whose cell average equals uABC, but 
which is within 0( 1 Al ) of uABC in regions of smoothness. 
Here IAl is the maximum area of the four triangles seen in 
Fig. 1. Moreover, this linear function will not introduce new 
oscillations in our approximation. This (simple) construc- 
tion is the key part of this paper; it will be described at the 
end of this section. We call this linear approximation LA(x). 
It is generally discontinuous across the boundary of each 
triangle. 

Let xsC be the midpoint of side BC, etc. Let L,(x&) 
denote the limit of LA(x) as x + xBc from inside triangle 
ABC and LA(x&) denote the limit as x -+ xsc from outside 
triangle ABC. Generally, 

IL,(x~~)-L(x’&)I =WAl). 

Our second-order accurate, semi-discrete approximation to 
(2.3) is 

a 
-u,,c(t)= --& at C~BC&af,)? LAXOSC)) .I,, 

ABC 

+ hAB(LA(xt,,), Ld(x%) ‘IA, 

+ hAC(LA(x~,h Ld(x:C)) ‘zACl. (2.6) 

By the midpoint formula for integrals, this approximation is 
weakly second-order accurate, in the sense that each of the 
three flux terms above is within U( I Al ) of the line integrals, 
j F . n dl, along the corresponding interfaces. However, due 
to the shifting stencil and varying size and relation of the 
triangles, the pointwise truncation error is generally only 
0( IAl 1’2), i.e., first order. The performance appears to be 
around 1.7-2.0 order in L, (see Section 3). 

generated. The first such candidate Li, is the linear inter- 
polate of the three values 

Li is the interpolation of 

(x ABC7 ‘ABC), (xB~~p uB~~)t txAB.6 uA~~)T 

and Li the interpolation of 

(x ABC? uA~C)? txAc~? uACEh txAB,? VABF), 

These three linear interpolants are sketched in Fig. 2. Here 
and below we assume that the three triangle centroids are 
not colinear. At this point, three possible L> exist, and 
a limited version of L, must be selected from these. To 
accomplish this, we first compute the magnitude of the 
gradient of each L> ; i.e., 

= lVL> 1, for i= 1, 2, 3. (2.7) 

By analogy with limiting procedures in one space dimension 
[19], a valid, non-compressive limiter corresponds to the 
selection of the Ld for which IVLL I is the minimum. This 
choice is analogous to the min limiter in second-order EN0 
methods [4]. At extrema (i.e., when uABC is an extremum 
relative to uACE, uBCD, and u ABF), a first-order approxima- 
tion (LA = UABc) is used. This limiter is applicable to 
problems involving nonlinear flux functions. 

It is desirable to construct a more compressive limiter 
than that described above for problems involving linear or 
contact discontinuities. To accomplish this, we first consider 
the more compressive slope limiters in one dimension, the CD 
type limiters described by Sweby [ 19, Eq. (3.17)] of which 
superbee is the most compressive, corresponding to @ = 2. 
These limiters allow the use of piecewise linear approxima- 
tions to the solution for which the slope is not the minimum, 

2.2. Construction of Linear Function L, V 
We now describe the construction of L, . In each interior F 

triangle, three candidates for L,, designated L>, are FIG. 2. Three candidates for the linear interpolation of v over A,,,. 
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subject to the restriction that no overshoot (or undershoot) 
occurs at the cell boundaries. 

The next limiter we describe is a multidimension analog 
of the one-dimensional @ limiters. The approach here is to 
select the Ld for which \VL’, 1 is maximized, subject to the 
restriction that no overshoot or undershoot occurs at any of 
the three triangle boundaries. The procedure is as follows: 

(i) Select the LI, for which IVLL 1 is the maximum. 
(ii) Check for overshoot or undershoot at xAB, xAc, 

and xBc. For L:, to represent a valid L,, it suffices to verify 
that, for ddBc, 

L,(x,,) is between vABC and vACE, 

L,(x,,) is between vABC and vABF, 

L,(x,,) is between vABC and vBCD. 

If these three requirements are satisfied, Ld is the 
appropriate L, . 

(iii) If the L> above results in overshoot or under- 
shoot at any one of the three midpoints, select the Lid for 
which IVL> 1 is the second largest and repeat the test in (ii). 
If this L> does not satisfy the test in (ii), select the LL for 
which IVL> 1 is the minimum. 

Extrema are treated as described above. 

Given LA, the right-hand side of (2.6) can be evaluated 
and v,,,(t) integrated in time. This time integration is 
accomplished via a second-order TVD Runge-Kutta proce- 
dure [20]. 

3. NUMERICAL VERlFICATION OF 
HIGHER ORDER SCHEME 

In this section we present results for the convergence of 
the general method described in Section 2, as well as solu- 
tion contours and profiles demonstrating the accuracy of 
the method. In all cases, the solution region is a square 
domain discretized via right triangular “volumes” (referred 
to as elements), as shown in Fig. 3. Periodic boundary 
conditions are imposed in both the X- and the y-directions; 
the initial condition is similarly x- and y-periodic unless 
otherwise noted. 

3.1. Rate of Convergence 

The rate of convergence of the scheme is now assessed for 
both linear and nonlinear flux functions. We first consider 
solution of the linear conservation law 

u, + V. (au) = 0, 

subject to the initial condition 

24,(x, y) = sin(2nx) sin(2ny). 

(3.1) 

(3.2) 

Y 

-0 0.2 0.4 0.6 0.8 1.0 
X 

FIG. 3. Triangular grid used for the numerical calculations. 

Our base monotone scheme uses the EO flux [ 161: 

NW,> h)=f+(wl)+.!-(%). (3.3) 

For linear equations with constant a = (a,, a,), 

f+(u)= Cmax((a.n), O)lu, (3.4a) 

f-(U)= [min((a.n),O)]u. (3.4b) 

For Burgers’ equation (considered below), where 
f, =f2 = (4) u2 (f, and fi are the components of F), 

f+(u)=,max((T)il,O), (3Sa) 

f~(z.f)=umin((~),O), (3Sb) 

where n, and n2 represent the components of n. 
A contour plot of the initial condition (3.2) is shown in 

Fig. 4. Four extrema are evident. The rate of convergence of 
the method was determined for both the case a, = ay = 1 
and a, = 1, a, = 0. The solution of (3.1) was achieved using 
the more compressive limiter described above. Convergence 
was assessed both on an element by element basis and after 
applying a local averaging procedure. It is expected that 
local averaging procedures would enhance the rate of con- 
vergence, as the scheme is expected to be second order in 
only the weak sense, i.e., after integrating locally in space 
and time (a type of local averaging). The averaging per- 
formed in this study is, however, only spatial; no temporal 
averaging is attempted. This is because spatial-temporal 
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1.a 

Y 0.5 

0 

) 
@I#@ 

0.5 

x 

0.01 

L,Error 

0.001 

FIG. 4. Contour plot of the initial condition (3.2). Contours 
correspond to u=O, kO.15, +0.3, kO.45, kO.6, kO.75, kO.9. 

averages are rather cumbersome to perform in practice, and 
the spatial averaging alone reveals the expected trend. Com- 
putations were performed for grids ranging in discretization 
from 200 elements (I = 0.1, where 1 is the spacing between 
adjacent nodes or, analogously, I = (24 )‘j2, with A the area 
of any element) to 12,800 elements (I= 0.0125). In all cases 
the CFL number, A( = At/l), was set to 0.1. 

Displayed in Fig. 5 is a log-log plot of L, error versus 1. 
In this case, a, = 1, uY = 0. Results are shown for both a lirst- 
order scheme and the higher order scheme, with error com- 
puted on an element by element basis. Least squares linear 
fits (for I < 0.1) give the order of convergence, designated n, 

0.1 

0.01 

LjError 

0.001 

0.01 0.05 0.10 

P 

J 
0.01 0.05 o.;o 

FIG. 6. L, error after local averaging for the case a, = 1, a, = 0 for 
first-order (0) and second-order ( x ) schemes. Lines are least square fits 
with slopes as indicated. 

for the two methods; for the first-order method we obtain 
0.99 and for the higher order method 1.55. Figure 6 displays 
an analogous plot after applying a local averaging 
procedure. Specifically, this averaging procedure entails 
averaging the computed value of u over square regions 
comprised of two adjacent elements and computing the 
error in terms of the difference between this average and the 
exact solution of Eq. (3.1) evaluated at the square midpoint. 
For the grid displayed in Fig. 3, 100 such square regions 

TABLE I 

Computed Accuracies for the Linear Case 

Scheme Norm #elements n 

a, = a, = 1 

2nd 0 L, 
2nd 0 L, 
2nd 0 L2 
2nd 0 L2 
2nd 0 LCC 
2nd 0 LC 
1st 0 Ll 
1st 0 Ll 
1st 0 L2 
1st 0 L2 
1st 0 L, 
1st 0 LX 

a,=l,a,=O 

2nd 0 Ll 
2nd 0 L, 
1st 0 Ll 
1st 0 L, _ 

1 1.55 
2 1.73 
1 0.99 

2 1.04 
FIG. 5. L, error on a per element basis for the case a, = 1, ay = 0 for 

first-order (0 ) and second-order ( x ) schemes. Lines are least square tits Note. Initial condition uO(x, y) = sin(2x.x) sin(2rry). Error computed 
with slopes as indicated. over the entire domain. 

1 1.75 
2 1.78 

1 1.61 
2 1.59 

1 1.08 
2 1.20 

1 0.95 

2 0.95 
1 0.96 

2 0.96 

1 0.98 
2 0.96 
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TABLE II 

Computed Accuracies (L,) for the Linear Case 

shown. After local averaging, L, error -O(1’.78), L, error 
-O(Z1.59), and L, error - O(11.20). These results a;e 
analogous to those of second-order TVD schemes in one 

Scheme #elements n dimension, for which L, error -O(Z2), L, error -O(Z’.5), 
and L, error - O(I), where I is a typical grid spacing. 

(&=a,.=1 Slightly improved rates of convergence in L, are obtained 
2nd 0 1 1.85 when the initial condition contains no extrema. This is 
2nd 0 2 1.87 demonstrated in Table II, where results for L, error for the 

initial condition u,(x, y) = sin(zx/:!) sin(71y/2) are dis- 
a,=O,a,.=l played. Here, to eliminate the effects of the discontinuity in 

2nd 0 1 1.22 
2nd 0 2 1.80 

u at the boundary (recall that periodic boundary conditions 

1st 0 1 0.99 
are imposed), error is computed only over the region 

1st 0 2 1.10 0.6 d x, y < 0.8 at an early time, t = 0.05. In one case, local 
averaging has a more dramatic effect, improving the L, 

Note. Initial condition u,,(x, y) = sin(rrx/2) sin(ny/2) contains no accuracy of the scheme from 1.22 to 1.80. 
extrema. Error computed over 0.6 GX, y Q 0.8 at f = 0.05. We next assess the rate of convergence of the scheme for 

a nonlinear flux function,f, =f2 = 4~’ in Eq. (2.1) (i.e., the 
exist. Again, averaging is only applied spatially; no inviscid Burgers’ equation). The initial condition is here 
temporal averaging is performed. Assessing error in this taken as u,(x, y) = sin(2nx); this problem is therefore 
manner results in least squares linear fits of slope 1.04 for the essentially one-dimensional. For this case we apply the less 
first-order method and 1.73 for the higher order method. As compressive min limiter described in Section 2.2 (this limiter 
expected, local averaging enhances the rate of convergence is more appropriate for nonlinear flux functions). Away 
though, in this case, the improvement is not that substantial. from extrema, convergence in L, is O(1.98) with local 
In other cases, however, the improvement is more signifi- averaging and 0( 1.95) on an element by element basis. For 
cant (see below). the first-order scheme, the analogous rates of convergence 

Shown in Table I is a compilation of the rates of con- are O(1.00) and 0(0.98), respectively. Over the entire 
vergence for both the cases a,=~,= 1 and a,= 1, a,=O. domain, the convergence of our scheme in L, is O(1.89) 
Results for both a first-order scheme and our more accurate with local averaging and 0( 1.82) on an element by element 
scheme are displayed. In all cases the initial condition is as basis. The analogous first-order results are 0( 1.00) and 
in (3.2). Error is computed over the entire domain in two O(0.95). Solution profiles for this essentially one-dimen- 
ways: (1) element by element ( #elements = 1); (2) by com- sional problem, computed using our scheme with 80 
bining two adjacent elements into squares ( #elements = 2). elements in the x-direction, are shown in Fig. 7. No over- 
For the case a, = a,, = 1, results for L, and L, error are also shoot or unphysical oscillations appear in the solution. 

1.0 

0.5 

” 0.0 

-0.5 

-1.0 

FIG. 7. Solution profiles for Burgers’ equation using second-order FIG. 8. Results for hrst-order scheme with 800 elements at t= 1. 
scheme (80 elements in x-direction). Contours correspond to u = 0, k 0.1, kO.2. 
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Y 
0.5 

0 

0 0.5 1.0 

x 

FIG. 9. Results for second-order scheme with 800 elements at f= 1. 
Contours correspond to u=O, kO.15, kO.3, kO.45, kO.6, kO.75. 

Based on the numerical results presented above and the 
analysis presented in Section 2, the method has been shown 
to be of greater than first-order accuracy. Observed 
convergence, after local averaging, ranged from O(1.7) to 
O(2.0) in L,. 

3.2. Examples of Numerical Accuracy 

We now present some detailed numerical results for our 
higher order scheme and compare these with the results of 
a first-order method. The first results are for the solution of 
Eqs. (3.1) and (3.2) with a, = a, = 1. Figure 8 displays the 
solution contour results for the first-order scheme with 800 

1.0' 

y 0.5. 

0 

0 0.5 1.0 

x 

FIG. 10. Results for first-order scheme with 3200 elements at t= 1. 
Contours correspond to u = 0, + 0.15, f 0.3, & 0.45. 

y 0.5 

0 

0 0.5 1.0 
x 

FIG. 11. Results for second-order scheme with 3200 elements at t = 1. 
Contourscorrespond to u=O, k0.15, kO.3, kO.45, kO.6, kO.75, kO.9. 

elements (I = 0.05) and A = 0.1 (the same CFL number is 
used in all computations) at t = 1. The exact solution is a 
reproduction of the initial condition, shown in Fig. 4. The 
first-order method is clearly very diffusive; the maximum 
value of u is here only 0.25, in contrast to the maximum in 
the initial condition of 1. Results for the second-order 
scheme, using the more compressive limiter, at t = 1 are 
shown in Fig. 9. Though some distortion of the initial condi- 
tion is apparent, the solution is considerably improved over 
the first-order solution; the maximum value of u is now 0.81. 
Shown in Fig. 10 are the t = 1 results for the first-order 
scheme using 3200 elements (I = 0.025). Substantial numeri- 
cal diffusion is still evident; the maximum value of u is only 
0.49. The solution contour using the second-order method is 
displayed in Fig. 11. The t = 1 solution in this case closely 
resembles the initial condition, with a maximum value of 1.4 
of 0.94. Figures 12 and 13 show solution profiles taken along 
the line y = x (the velocity direction) at t = 0, 0.25, 0.50.75, 

1.0 

0.8 

0.6 

" 0.4 

0.2 

y=x 

FIG. 12. Solution profiles along the line y=x for the first-order 
scheme (3200 elements). 
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1.0 

0.8 

0.6 

" 0.4 

0.2 

0 

- 0.2 

0 0.25 0.5 0.75 1.0 

Y=X 

FIG. 13. Solution protiles along the line y =x for the second-order 
scheme (3200 elements I. 

and 1 for both the first- and second-order methods. In both 
cases, 3200 elements were used. The second-order results are 
quite sharp at all times, while the first-order results show a 
continual degradation with increasing time. 

We next consider solution of the rotating cone problem, 
a variable coefficient linear advection problem. The initial 
condition, shown in Fig. 14, is a cone of maximum height 1 
and radius 0.15, centered at x =0.75, y = 0.5. We set 
a, = - (y - 0.5), a, = (x - 0.5) in Eq. (3.1). The exact solu- 
tion is counterclockwise rotation of the initial condition 
about x = 0.5, y = 0.5. The solution after half of a revolution 
attained via the first-order method with 3200 elements is 
shown in Fig. 15. The maximum in u is here only 0.48, 
reduced from 1 in the initial condition. The solution using 
the higher order method, again with 3200 elements, is 
shown in Fig. 16. The limiter used here is again the more 

1.0 

0.8 

0.6 

Y 

0.4 

0.2 

0 0.2 0.4 0.6 0.8 1.0 
x 

FIG. 14. Contour plot of the initial condition for rotating cone 
problem. Contours correspond to u=O, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9. 

0.6 

Y 0 
0.4 cl 0 
0.2 

0 I I I I 
0 0.2 0.4 0.6 0.8 1.0 

x 

1.0 

0.8 

FIG. 15. Results for first-order scheme with 3200 elements after f 
revolution. Contours correspond to u = 0, 0.1, 0.2, 0.3, 0.4. 

compressive limiter described in Section 2.2. The solution is 
greatly improved over that achieved by the first-order 
method; the maximum in u is here 0.88. 

The last example considered is the Buckley-Leverett 
equation describing two phase flow through porous media 
(e.g., water displacing oil), 

24, + V. [af(u)] = 0, (3.6) 

where u refers to the saturation of one of the fluids (water), 
a represents the two-dimensional velocity field andf(u) is a 
typically nonconvex function derived from laboratory 
measurements. Here we take 

f= u2 
0.2 - 0.4U + 1 .2u2. (3.7) 

0.6 

Y 

0.4 0 0 

1.0 

0.8 

0.2 

0 

0 0.2 0.4 0.6 0.8 1:o 
x 

FIG. 16. Results for second-order scheme with 3200 elements after 4 
revolution. Contours correspond to u = 0, 0.1,0.2, 0.3,0.4,0.5,0.6, 0.7, 0.8. 
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0.6 

Y 

0.4 

0.2 

a 
0 0.2 0.4 0.6 0.8 1.0 

x 

FIG. 17. Initial streamlines for flow in a quarter five spot geometry. 

Solution of (3.6) is complicated by the fact that the velocity 
field, determined by Darcy’s law, is dependent on the water 
saturation u and therefore evolves in time. See [21] for 
details. 

We solve (3.6) using the min limiter described in Sec- 
tion 2.2 on a 200-element grid with initial condition u. = 0. 
Water is continuously injected in the lower left-hand corner 
(u = 1) and fluids produced in the upper right-hand corner; 
no flow boundary conditions are imposed elsewhere. This 
specification corresponds to one quarter of a five spot 
production pattern. The velocity field is computed at each 
time step through an accurate finite element solution of the 
so-called pressure equation. Streamlines for the initial 
velocity field are shown in Fig. 17; this velocity field is con- 

The integrals along the other sides are approximated 
analogously. This is generally a first-order accurate method 
(second-order accuracy occurs in special cases, e.g., if all the 
triangles are equilateral). However, since E is relatively small 
here (otherwise transport is diffusion dominated and the 
sophisticated treatment of convection is unnecessary), we 
believe this to be an adequate treatment of these terms. 

Finally, we mention that work is underway to 
approximate (2.1) using a higher order accurate EN0 tri- 
angle based method. See [20, 221 for successful Cartesian 
coordinate approaches. 
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relatively sharp front near the production region and the 
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4. POSSIBLE EXTENSIONS 

Other limiting procedures are quite feasible and should 
be tested. Our compressive limiter is not a direct analogue 
of superbee, since superbee (and many other limiters [ 191) 
occasionally allows values other than zero or any of the 
slopes being compared to be the final choice of slope (or 
gradient in our two-dimensional case). 

A more significant issue is the treatment of diffusive terms. 
In this case, the governing equation is of the form 

u, + V. F(u) = 4~ + u,), E > 0. (4.1) 

The discrete analogue of (2.3) now involves the additional 
term, 

on the right side of (2.3). Up to first-order accuracy, we 
compute each of the three terms in (4.2) as follows. The 
limiting procedure has already given us a gradient within 
the triangle ABC as well as for each of the three neighbors. 
Therefore, the integral along side AB in (4.2) can be 
computed approximately as 

L-FL ABC + VLABF) .nl+. (4.3) 
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